Equations sheet for FYS1120

October 1, 2012

Electric fields

Coulomb's law

$$
\begin{gathered}
\mathbf{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}} \\
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \\
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\rho}{r^{2}} \hat{\mathbf{r}} d \tau
\end{gathered}
$$

Dipoles

$$
\begin{array}{ll}
\tau=\boldsymbol{\mu} \times \mathbf{B} & \tau=\mathbf{p} \times \mathbf{E} \\
\boldsymbol{\mu}=I \mathbf{A} & \mathbf{p}=q \mathbf{d} \\
U_{B}=-\boldsymbol{\mu} \cdot \mathbf{B} & U_{E}=-\mathbf{p} \cdot \mathbf{E}
\end{array}
$$

Potential, energy and work

$$
\begin{gathered}
W_{a \rightarrow b}=U_{a}-U_{b} \\
U=\frac{q_{0}}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}} \\
V=\frac{U}{q_{0}}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}} \\
V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r} \\
V_{B}-V_{A}=-\int_{A}^{B} \mathbf{E} \cdot \mathbf{d l} \\
\nabla V=-\mathbf{E}
\end{gathered}
$$

Energy stored in magnetic and electric fields.

$$
U=\frac{1}{2} \int\left(\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right) d \tau
$$

Energy stored in solenoid and capacitor:

$$
U_{B}=\frac{1}{2} L I^{2}, \quad U_{E}=\frac{1}{2} \frac{Q^{2}}{C}
$$

Maxwell's equations

In general

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} & \oint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{A}=\frac{Q_{\mathrm{encl}}}{\epsilon_{0}} \\
\nabla \cdot \mathbf{B}=0 & \oint_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{A}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \oint_{L} \mathbf{E} \cdot \mathrm{~d} \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{A} \\
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} &
\end{array}
$$

$$
\oint_{L} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\mu_{0} I_{S}+\mu_{0} \epsilon_{0} \frac{d}{d t} \int_{S} \mathbf{E} \cdot d \mathbf{A}
$$

In matter

$$
\begin{array}{ll}
\nabla \cdot \mathbf{D}=\rho_{f} & \oint_{S} \mathbf{D} \cdot \mathrm{~d} \mathbf{A}=Q_{f_{e n c}} \\
\nabla \cdot \mathbf{B}=0 & \oint_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{A}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \oint_{L} \mathbf{E} \cdot \mathrm{~d} \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{A} \\
\nabla \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t} & \oint_{L} \mathbf{H} \cdot \mathrm{~d} \mathbf{l}=I_{f_{\text {enc }}}+\frac{d}{d t} \int_{S} \mathbf{D} \cdot d \mathbf{A}
\end{array}
$$

Definitions

$$
\begin{gathered}
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \\
\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}
\end{gathered}
$$

In linear media

$$
\begin{array}{ll}
\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E} & \mathbf{D}=\epsilon \mathbf{E} \\
\mathbf{M}=\chi_{m} \mathbf{H} & \mathbf{H}=\frac{1}{\mu} \mathbf{B}
\end{array}
$$

Magnetism

$$
\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{S}
$$

Field inside infinitely long solenoid:

$$
\mathbf{B}=\mu_{0} N I
$$

Field between two coaxial cylinders:

$$
\mathbf{B}=\frac{\mu_{0} I}{2 \pi r}
$$

Field inside the smallest of two coaxial cylinders:

$$
\mathbf{B}=\frac{\mu_{0} I r}{2 \pi a^{2}}
$$

Field outside infinitely long conducting wire:

$$
\mathbf{B}=\frac{\mu_{0} I}{2 \pi r}
$$

Faraday's law and emf

$$
\begin{gathered}
\epsilon=\int \mathbf{f}_{\mathbf{s}} \cdot d \mathbf{l} \\
\oint \mathbf{E} \cdot d \mathbf{l}=-\frac{d \Phi_{B}}{d t} \\
\mathbf{J}=\sigma \mathbf{f}=\sigma(\mathbf{E}+\mathbf{v} \times \mathbf{B})
\end{gathered}
$$

Biot-Savart law

$$
\begin{gathered}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{q \mathbf{v} \times \mathbf{r}}{r^{2}} \\
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{I} \times \hat{\mathbf{r}}}{r^{2}} d l=\frac{\mu_{0}}{4 \pi} I \int \frac{d \mathbf{l} \times \hat{\mathbf{r}}}{r^{2}}
\end{gathered}
$$

Mutual inductance

$$
\begin{gathered}
M=\frac{N_{2} \Phi_{B 2}}{i_{1}}=\frac{N_{1} \Phi_{B 1}}{i_{2}} \\
\mathcal{E}_{2}=-M \frac{d i_{1}}{d t} \\
\mathcal{E}_{1}=-M \frac{d i_{2}}{d t}
\end{gathered}
$$

Continuity of magnetic flux

$$
\oint_{S} \mu_{0} \mathbf{H} \cdot d \mathbf{A}=\mathbf{0}
$$

over a closed surface.

Circuits

Effect:

$$
P=V I
$$

Over ohmic resistance:

$$
P=R I^{2}=\frac{V^{2}}{R} .
$$

Decharging capacitor:

$$
q=Q_{0} e^{(-t /(R C))}
$$

The time constant τ of $R C$ circuit expresses how fast the $R C$-circuit is charged or discharged:

$$
\tau=R C
$$

Self inductance:

$$
L=\frac{N \Phi_{B}}{i} \Longleftrightarrow \mathcal{E}=-L \frac{d i}{d t}
$$

Units

Henry:

$$
\begin{align*}
H & =\frac{\mathrm{m}^{2} \cdot \mathrm{~kg}}{\mathrm{~s}^{2} \cdot \mathrm{~A}^{2}}=\frac{\mathrm{J}}{\mathrm{~A}^{2}}=\frac{\mathrm{Wb}}{\mathrm{~A}}=\frac{\mathrm{V} \cdot \mathrm{~s}}{\mathrm{~A}} \tag{1}\\
& =\frac{\mathrm{J} / \mathrm{C} \cdot \mathrm{~s}}{\mathrm{C} / \mathrm{s}}=\frac{\mathrm{J} \cdot \mathrm{~s}^{2}}{\mathrm{C}^{2}}=\frac{\mathrm{m}^{2} \cdot \mathrm{~kg}}{\mathrm{C}^{2}}=\Omega \cdot \mathrm{s} \tag{2}
\end{align*}
$$

Ampere:

$$
\mathrm{A}=\frac{\mathrm{C}}{\mathrm{~S}}
$$

Tesla:

$$
\mathrm{T}=\frac{\mathrm{V} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}=\frac{\mathrm{N}}{\mathrm{~A} \cdot \mathrm{~m}}=\frac{\mathrm{Wb}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{C} \cdot \mathrm{~s}}=\frac{\mathrm{kg}}{\mathrm{~A} \cdot \mathrm{~s}^{2}}
$$

1 Constants

Proton mass

$$
m_{p}=1.67 \times 10^{-27} \mathrm{~kg}
$$

Proton charge

$$
q_{p}=1 e=1.602 \times 10^{-19} \mathrm{C}
$$

Electron mass

$$
m_{e}=9.11 \times 10^{-31} \mathrm{~kg}
$$

Electron charge

$$
q_{e}=-1 e=-1.602 \times 10^{-19} \mathrm{C}
$$

Electrical permittivity in vacuum

$$
\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
$$

Gravitational constant

$$
G=6.67 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}
$$

Voltage drop over capacitor:

$$
V=\frac{q}{C}
$$

Charging capacitor in $R C$-circuit:

$$
q=\mathcal{E} C\left[1-e^{(-t /(R C))}\right]
$$

