Comments on: The oblig is here http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/ The home of FYS1120 Mon, 23 Dec 2013 11:26:13 +0000 hourly 1 https://wordpress.org/?v=4.9.3 By: Jørgen Trømborg http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-381 Wed, 28 Sep 2011 14:36:34 +0000 http://mindseye.no/?p=856#comment-381 Ja. Du kan velge selv, eller velge både numerisk og analytisk løsning, som sannsynligvis er det du lærer mest av.

]]>
By: Jørn Kløvfjell Mjelva http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-380 Wed, 28 Sep 2011 11:51:18 +0000 http://mindseye.no/?p=856#comment-380 Skal oppgave e). og f). løses analytisk eller numerisk?

]]>
By: Svenn-Arne Dragly http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-369 Mon, 26 Sep 2011 13:36:37 +0000 http://mindseye.no/?p=856#comment-369 Nederst på denne siden ligger det en lenke som heter “Numerical solutions of Laplace’s equation”:
http://mindseye.no/fys1120/notes/

]]>
By: Siva http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-368 Mon, 26 Sep 2011 13:21:53 +0000 http://mindseye.no/?p=856#comment-368 hei
hvor kan jeg finne den Jacobis metode til den oppgave c ??

]]>
By: Jørgen Trømborg http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-350 Tue, 20 Sep 2011 08:12:16 +0000 http://mindseye.no/?p=856#comment-350 Hi Knut,
the notation [0,a]\times[0,b] means the rectangle with corners (0,0), (a,0), (0,b), (a,b). That is to say, the square bracket before the multiplication denotes the limits in x and the square bracket after the multiplication holds the limits in y. This notation is quite common, so you are likely to see it again.

In fact, the domain [a,0]\times[0,b] would be the same rectangle, although written in a non-standard way.

]]>
By: Knut http://elektromagnetisme.no/2011/09/17/the-oblig-is-here/#comment-346 Mon, 19 Sep 2011 14:09:06 +0000 http://mindseye.no/?p=856#comment-346 Hi!

In part c of the oblig we are asked to use Jacobi’s method to find V(x,y) in the domain [0,a] X [0,b].

As i am reading this now, that is a line segment of length |a-b| on the y-axis. Is this correct or do you mean the domain [a,0] X [0,b]?

]]>